Convergent and distributed effects of the 3q29 deletion on the human neural transcriptome
-
Published:2021-06
Issue:1
Volume:11
Page:
-
ISSN:2158-3188
-
Container-title:Translational Psychiatry
-
language:en
-
Short-container-title:Transl Psychiatry
Author:
Sefik Esra, Purcell Ryan H.ORCID, Aberizk Katrina, Averbach Hallie, Black Emily, Burrell T. Lindsey, Cambala Shanthi, Carlock Grace, Caspary Tamara, Cubells Joseph F., Cutler David, Dawson Paul A., Epstein Michael T., Espana Roberto, Gambello Michael J., Goines Katrina, Guest Ryan M., Johnston Henry R., Klaiman Cheryl, Koh Sookyong, Leslie Elizabeth J., Li Longchuan, Mak Bryan, Malone Tamika, Mosley Trenell, Murphy Melissa M., Papetti Ava, Pollak Rebecca M., Russo Rossana Sanchez, Saulnier Celine A., Shultz Sarah, Sisodoya Nikisha, Sloan Steven, Warren Stephen T., Weinshenker David, Wen Zhexing, White Stormi Pulver, Zwick Mike, Walker Elaine F., Bassell Gary J., Mulle Jennifer G.ORCID,
Abstract
AbstractThe 3q29 deletion (3q29Del) confers high risk for schizophrenia and other neurodevelopmental and psychiatric disorders. However, no single gene in this interval is definitively associated with disease, prompting the hypothesis that neuropsychiatric sequelae emerge upon loss of multiple functionally-connected genes. 3q29 genes are unevenly annotated and the impact of 3q29Del on the human neural transcriptome is unknown. To systematically formulate unbiased hypotheses about molecular mechanisms linking 3q29Del to neuropsychiatric illness, we conducted a systems-level network analysis of the non-pathological adult human cortical transcriptome and generated evidence-based predictions that relate 3q29 genes to novel functions and disease associations. The 21 protein-coding genes located in the interval segregated into seven clusters of highly co-expressed genes, demonstrating both convergent and distributed effects of 3q29Del across the interrogated transcriptomic landscape. Pathway analysis of these clusters indicated involvement in nervous-system functions, including synaptic signaling and organization, as well as core cellular functions, including transcriptional regulation, posttranslational modifications, chromatin remodeling, and mitochondrial metabolism. Top network-neighbors of 3q29 genes showed significant overlap with known schizophrenia, autism, and intellectual disability-risk genes, suggesting that 3q29Del biology is relevant to idiopathic disease. Leveraging “guilt by association”, we propose nine 3q29 genes, including one hub gene, as prioritized drivers of neuropsychiatric risk. These results provide testable hypotheses for experimental analysis on causal drivers and mechanisms of the largest known genetic risk factor for schizophrenia and highlight the study of normal function in non-pathological postmortem tissue to further our understanding of psychiatric genetics, especially for rare syndromes like 3q29Del, where access to neural tissue from carriers is unavailable or limited.
Funder
U.S. Department of Health & Human Services | NIH | National Institute of Mental Health
Publisher
Springer Science and Business Media LLC
Subject
Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health
Reference122 articles.
1. Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J, et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am J Psychiatry. 2011;168:302–16. 2. Marshall CR, Howrigan DP, Merico D, Thiruvahindrapuram B, Wu W, Greer DS, et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet. 2017;49:27–35. 3. Mulle JG, Dodd AF, McGrath JA, Wolyniec PS, Mitchell AA, Shetty AC, et al. Microdeletions of 3q29 confer high risk for schizophrenia. Am J Hum Genet. 2010;87:229–36. 4. Szatkiewicz JP, O'Dushlaine C, Chen G, Chambert K, Moran JL, Neale BM, et al. Copy number variation in schizophrenia in Sweden. Mol Psychiatry. 2014;19:762–73. 5. Mulle JG. The 3q29 deletion confers >40-fold increase in risk for schizophrenia. Mol Psychiatry. 2015;20:1028–9.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|