Reconsidering repurposing: long-term metformin treatment impairs cognition in Alzheimer’s model mice

Author:

Cho So YeonORCID,Kim Eun Woo,Park Soo Jin,Phillips Benjamin U.,Jeong Jihyeon,Kim HyunjeongORCID,Heath Christopher J.,Kim Daehwan,Jang Yurim,López-Cruz LauraORCID,Saksida Lisa M.ORCID,Bussey Timothy J.ORCID,Lee Do Yup,Kim EosuORCID

Abstract

AbstractMetformin, a primary anti-diabetic medication, has been anticipated to provide benefits for Alzheimer’s disease (AD), also known as “type 3 diabetes”. Nevertheless, some studies have demonstrated that metformin may trigger AD pathology and even elevate AD risk in humans. Despite this, limited research has elucidated the behavioral outcomes of metformin treatment, which would hold significant translational value. Thus, we aimed to perform thorough behavioral research on the prolonged administration of metformin to mice: We administered metformin (300 mg/kg/day) to transgenic 3xTg-AD and non-transgenic (NT) C57BL/6 mice over 1 and 2 years, respectively, and evaluated their behaviors across multiple domains via touchscreen operant chambers, including motivation, attention, memory, visual discrimination, and cognitive flexibility. We found metformin enhanced attention, inhibitory control, and associative learning in younger NT mice (≤16 months). However, chronic treatment led to impairments in memory retention and discrimination learning at older age. Furthermore, metformin caused learning and memory impairment and increased levels of AMPKα1-subunit, β-amyloid oligomers, plaques, phosphorylated tau, and GSK3β expression in AD mice. No changes in potential confounding factors on cognition, including levels of motivation, locomotion, appetite, body weight, blood glucose, and serum vitamin B12, were observed in metformin-treated AD mice. We also identified an enhanced amyloidogenic pathway in db/db mice, as well as in Neuro2a-APP695 cells and a decrease in synaptic markers, such as PSD-95 and synaptophysin in primary neurons, upon metformin treatment. Our findings collectively suggest that the repurposing of metformin should be carefully reconsidered when this drug is used for individuals with AD.

Funder

Ministry of Education

Ministry of Health and Welfare

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3