Physical exercise mediates a cortical FMRP–mTOR pathway to improve resilience against chronic stress in adolescent mice

Author:

Yan Lan,Wang Mei,Yang Fengzhen,Wang Yajie,Wang Siqi,So Kwok-FaiORCID,Zhang LiORCID

Abstract

AbstractAerobic exercise effectively relieves anxiety disorders via modulating neurogenesis and neural activity. The molecular mechanism of exercise-mediated anxiolysis, however, remains incomplete. On a chronic restrain stress (CRS) model in adolescent mice, we showed that 14-day treadmill exercise profoundly maintained normal neural activity and axonal myelination in the medial prefrontal cortex (mPFC), in association with the prevention of anxiety-like behaviors. Further interrogation of molecular mechanisms revealed the activation of the mechanistic target of the rapamycin (mTOR) pathway within mPFC under exercise training. At the upstream of mTOR, exercise-mediated brain RNA methylation inhibited the expression of Fragile X mental retardation protein (FMRP) to activate the mTOR pathway. In summary, treadmill exercise modulates an FMRP–mTOR pathway to maintain cortical neural activity and axonal myelination, contributing to improved stress resilience. These results extended our understanding of the molecular substrate of exercise-mediated anxiolytic effect during adolescent period.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3