Modifiable predictors of suicidal ideation during psychotherapy for late-life major depression. A machine learning approach

Author:

Alexopoulos George S.ORCID,Raue Patrick J.,Banerjee Samprit,Mauer Elizabeth,Marino Patricia,Soliman Mohamed,Kanellopoulos Dora,Solomonov NiliORCID,Adeagbo Adenike,Sirey Jo Anne,Hull Thomas D.,Kiosses Dimitris N.,Areán Patricia A.

Abstract

AbstractThis study aimed to identify subgroups of depressed older adults with distinct trajectories of suicidal ideation during brief psychotherapy and to detect modifiable predictors of membership to the trajectories of suicidal ideation. Latent growth mixed models were used to identify trajectories of the presence of suicidal ideation in participants to a randomized controlled trial comparing Problem Solving Therapy with “Engage” therapy in older adults with major depression over 9 weeks. Predictors of membership to trajectories of suicidal ideation were identified by the convergence of four machine learning models, i.e., least absolute shrinkage and selection operator logistic regression, random forest, gradient boosting machine, and classification tree. The course of suicidal ideation was best captured by two trajectories, a favorable and an unfavorable trajectory comprising 173 and 76 participants respectively. Members of the favorable trajectory had no suicidal ideation by week 8. In contrast, members of the unfavorable trajectory had a 60% probability of suicidal ideation by treatment end. Convergent findings of the four machine learning models identified hopelessness, neuroticism, and low general self-efficacy as the strongest predictors of membership to the unfavorable trajectory of suicidal ideation during psychotherapy. Assessment of suicide risk should include hopelessness, neuroticism, and general self-efficacy as they are predictors of an unfavorable course of suicidal ideation in depressed older adults receiving psychotherapy. Psychotherapeutic interventions exist for hopelessness, emotional reactivity related to neuroticism, and low self-efficacy, and if used during therapy, may improve the course of suicidal ideation.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of Mental Health

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3