Prediction models for postoperative delirium in elderly patients with machine-learning algorithms and SHapley Additive exPlanations

Author:

Song Yuxiang,Zhang Di,Wang Qian,Liu Yuqing,Chen Kunsha,Sun Jingjia,Shi Likai,Li Baowei,Yang Xiaodong,Mi Weidong,Cao JiangbeiORCID

Abstract

AbstractPostoperative delirium (POD) is a common and severe complication in elderly patients with hip fractures. Identifying high-risk patients with POD can help improve the outcome of patients with hip fractures. We conducted a retrospective study on elderly patients (≥65 years of age) who underwent orthopedic surgery with hip fracture between January 2014 and August 2019. Conventional logistic regression and five machine-learning algorithms were used to construct prediction models of POD. A nomogram for POD prediction was built with the logistic regression method. The area under the receiver operating characteristic curve (AUC-ROC), accuracy, sensitivity, and precision were calculated to evaluate different models. Feature importance of individuals was interpreted using Shapley Additive Explanations (SHAP). About 797 patients were enrolled in the study, with the incidence of POD at 9.28% (74/797). The age, renal insufficiency, chronic obstructive pulmonary disease (COPD), use of antipsychotics, lactate dehydrogenase (LDH), and C-reactive protein are used to build a nomogram for POD with an AUC of 0.71. The AUCs of five machine-learning models are 0.81 (Random Forest), 0.80 (GBM), 0.68 (AdaBoost), 0.77 (XGBoost), and 0.70 (SVM). The sensitivities of the six models range from 68.8% (logistic regression and SVM) to 91.9% (Random Forest). The precisions of the six machine-learning models range from 18.3% (logistic regression) to 67.8% (SVM). Six prediction models of POD in patients with hip fractures were constructed using logistic regression and five machine-learning algorithms. The application of machine-learning algorithms could provide convenient POD risk stratification to benefit elderly hip fracture patients.

Funder

Beijing Natural Science Foundation

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3