Allele-specific analysis reveals exon- and cell-type-specific regulatory effects of Alzheimer’s disease-associated genetic variants

Author:

He LiangORCID,Loika Yury,Kulminski Alexander M.

Abstract

AbstractElucidating regulatory effects of Alzheimer’s disease (AD)-associated genetic variants is critical for unraveling their causal pathways and understanding the pathology. However, their cell-type-specific regulatory mechanisms in the brain remain largely unclear. Here, we conducted an analysis of allele-specific expression quantitative trait loci (aseQTLs) for 33 AD-associated variants in four brain regions and seven cell types using ~3000 bulk RNA-seq samples and >0.25 million single nuclei. We first develop a flexible hierarchical Poisson mixed model (HPMM) and demonstrate its superior statistical power to a beta-binomial model achieved by unifying samples in both allelic and genotype-level expression data. Using the HPMM, we identified 24 (~73%) aseQTLs in at least one brain region, including three new eQTLs associated with CA12, CHRNE, and CASS4. Notably, the APOE ε4 variant reduces APOE expression across all regions, even in AD-unaffected controls. Our results reveal region-dependent and exon-specific effects of multiple aseQTLs, such as rs2093760 with CR1, rs7982 with CLU, and rs3865444 with CD33. In an attempt to pinpoint the cell types responsible for the observed tissue-level aseQTLs using the snRNA-seq data, we detected many aseQTLs in microglia or monocytes associated with immune-related genes, including HLA-DQB1, HLA-DQA2, CD33, FCER1G, MS4A6A, SPI1, and BIN1, highlighting the regulatory role of AD-associated variants in the immune response. These findings provide further insights into potential causal pathways and cell types mediating the effects of the AD-associated variants.

Funder

U.S. Department of Health & Human Services | NIH | National Institute on Aging

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3