Abstract
AbstractTransdiagnostic approaches to psychiatry have significant potential in overcoming the limitations of conventional diagnostic paradigms. However, while frameworks such as the Research Domain Criteria have garnered significant enthusiasm among researchers and clinicians from a theoretical angle, examples of how such an approach might translate in practice to understand the biological mechanisms underlying complex patterns of behaviors in realistic and heterogeneous populations have been sparse. In a richly phenotyped clinical sample (n = 186) specifically designed to capture the complex nature of heterogeneity and comorbidity within- and between stress- and neurodevelopmental disorders, we use exploratory factor analysis on a wide range of clinical questionnaires to identify four stable functional domains that transcend diagnosis and relate to negative valence, cognition, social functioning and inhibition/arousal before replicating them in an independent dataset (n = 188). We then use connectopic mapping to map inter-individual variation in fine-grained topographical organization of functional connectivity in the striatum—a central hub in motor, cognitive, affective and reward-related brain circuits—and use multivariate machine learning (canonical correlation analysis) to show that these individualized topographic representations predict transdiagnostic functional domains out of sample (r = 0.20, p = 0.026). We propose that investigating psychiatric symptoms across disorders is a promising path to linking them to underlying biology, and can help bridge the gap between neuroscience and clinical psychiatry.
Funder
EC | Horizon 2020 Framework Programme
Publisher
Springer Science and Business Media LLC
Subject
Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献