Abstract
AbstractDefects in essential metabolic regulation for energy supply, increased oxidative stress promoting excitatory/inhibitory imbalance and phospholipid membrane dysfunction have been implicated in the pathophysiology of schizophrenia (SZ). The knowledge about the developmental trajectory of these key pathophysiological components and their interplay is important to develop new preventive and treatment strategies. However, this assertion is so far limited. To investigate the developmental regulations of these key components in the brain, we assessed, for the first time, in vivo redox state from the oxidized (NAD+) and reduced (NADH) form of Nicotinamide Adenine Dinucleotide (NAD), energy and membrane metabolites, inhibitory and excitatory neurotransmitters by 31P and 1H MRS during the neurodevelopment of an SZ animal model with genetically compromised glutathione synthesis (gclm-KO mice). When compared to age-matched wild type (WT), an increase in NAD+/NADH redox ratio was found in gclm-KO mice until early adulthood, followed by a decrease in full adults as observed in patients. Especially, in early postnatal life (P20, corresponding to childhood), levels of several metabolites were altered in gclm-KO mice, including NAD+, NAD+/NADH, ATP, and glutamine + glutamate, suggesting an interactive compensation for redox dysregulation between NAD, energy metabolism, and neurotransmission. The identified temporal neurometabolic regulations under deficits in redox regulation provide insights into preventive treatment targets for at-risk individuals, and other neurodevelopmental disorders involving oxidative stress and energetic dysfunction.
Publisher
Springer Science and Business Media LLC
Subject
Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health
Reference51 articles.
1. Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388:86–97.
2. Guzman F. The four dopamine pathways relevant to antipsychotics pharmacology—Psychopharmacology Institute. 2019. https://psychopharmacologyinstitute.com/publication/the-four-dopamine-pathways-relevant-to-antipsychotics-pharmacology-2096#%20References. Accessed 27 Aug 2020.
3. Cannon TD. How Schizophrenia develops: cognitive and brain mechanisms underlying onset of Psychosis. Trends Cogn Sci. 2015;19:744–56.
4. Hardingham GE, Do KQ. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat Rev Neurosci. 2016;17:125–34.
5. Cuenod M, Steullet P, Cabungcal J-H, Dwir D, Khadimallah I, Klauser P, et al. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry. 2021;27:1–12.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献