Transcranial direct current stimulation induces long-term potentiation-like plasticity in the human visual cortex

Author:

Frase LukasORCID,Mertens Lydia,Krahl ArnoORCID,Bhatia KritiORCID,Feige BerndORCID,Heinrich Sven P.ORCID,Vestring StefanORCID,Nissen Christoph,Domschke Katharina,Bach MichaelORCID,Normann Claus

Abstract

AbstractTranscranial direct current stimulation (tDCS) is increasingly used as a form of noninvasive brain stimulation to treat psychiatric disorders; however, its mechanism of action remains unclear. Prolonged visual stimulation (PVS) can enhance evoked EEG potentials (visually evoked potentials, VEPs) and has been proposed as a tool to examine long-term potentiation (LTP) in humans. The objective of the current study was to induce and analyze VEP plasticity and examine whether tDCS could either modulate or mimic plasticity changes induced by PVS. Thirty-eight healthy participants received tDCS, PVS, either treatment combined or neither treatment, with stimulation sessions being separated by one week. One session consisted of a baseline VEP measurement, one stimulation block, and six test VEP measurements. For PVS, a checkerboard reversal pattern was presented, and for tDCS, a constant current of 1 mA was applied via each bioccipital anodal target electrode for 10 min (Fig. S1). Both stimulation types decreased amplitudes of C1 compared to no stimulation (F = 10.1; p = 0.002) and led to a significantly smaller increase (PVS) or even decrease (tDCS) in N1 compared to no stimulation (F = 4.7; p = 0.034). While all stimulation types increased P1 amplitudes, the linear mixed effects model did not detect a significant difference between active stimulation and no stimulation. Combined stimulation induced sustained plastic modulation of C1 and N1 but with a smaller effect size than what would be expected for an additive effect. The results demonstrate that tDCS can directly induce LTP-like plasticity in the human cortex and suggest a mechanism of action of tDCS relying on the restoration of dysregulated synaptic plasticity in psychiatric disorders such as depression and schizophrenia.

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3