Classification and deep-learning–based prediction of Alzheimer disease subtypes by using genomic data

Author:

Shigemizu DaichiORCID,Akiyama Shintaro,Suganuma Mutsumi,Furutani Motoki,Yamakawa Akiko,Nakano Yukiko,Ozaki KouichiORCID,Niida Shumpei

Abstract

AbstractLate-onset Alzheimer’s disease (LOAD) is the most common multifactorial neurodegenerative disease among elderly people. LOAD is heterogeneous, and the symptoms vary among patients. Genome-wide association studies (GWAS) have identified genetic risk factors for LOAD but not for LOAD subtypes. Here, we examined the genetic architecture of LOAD based on Japanese GWAS data from 1947 patients and 2192 cognitively normal controls in a discovery cohort and 847 patients and 2298 controls in an independent validation cohort. Two distinct groups of LOAD patients were identified. One was characterized by major risk genes for developing LOAD (APOC1andAPOC1P1) and immune-related genes (RELBandCBLC). The other was characterized by genes associated with kidney disorders (AXDND1,FBP1, andMIR2278). Subsequent analysis of albumin and hemoglobin values from routine blood test results suggested that impaired kidney function could lead to LOAD pathogenesis. We developed a prediction model for LOAD subtypes using a deep neural network, which achieved an accuracy of 0.694 (2870/4137) in the discovery cohort and 0.687 (2162/3145) in the validation cohort. These findings provide new insights into the pathogenic mechanisms of LOAD.

Funder

Japan Agency for Medical Research and Development

MEXT | Japan Society for the Promotion of Science

Research Funding for Longevity Sciences from the NCGG (21-24), The Hori Science and Arts Foundation, The Chukyo Longevity Medical Research and Promotion Foundation.

Research Funding for Longevity Sciences from the NCGG (21-23), Japanese Ministry of Health, Labour, and Welfare for Research on Dementia.

Japan Foundation For Aging and Health

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3