Identifying mental health status using deep neural network trained by visual metrics

Author:

Shafiei Somayeh B.ORCID,Lone Zaeem,Elsayed Ahmed S.,Hussein Ahmed A.ORCID,Guru Khurshid A.

Abstract

AbstractMental health is an integral part of the quality of life of cancer patients. It has been found that mental health issues, such as depression and anxiety, are more common in cancer patients. They may result in catastrophic consequences, including suicide. Therefore, monitoring mental health metrics (such as hope, anxiety, and mental well-being) is recommended. Currently, there is lack of objective method for mental health evaluation, and most of the available methods are limited to subjective face-to-face discussions between the patient and psychotherapist. In this study we introduced an objective method for mental health evaluation using a combination of convolutional neural network and long short-term memory (CNN-LSTM) algorithms learned and validated by visual metrics time-series. Data were recorded by the TobiiPro eyeglasses from 16 patients with cancer after major oncologic surgery and nine individuals without cancer while viewing18 artworks in an in-house art gallery. Pre-study and post-study questionnaires of Herth Hope Index (HHI; for evaluation of hope), anxiety State-Trait Anxiety Inventory for Adults (STAI; for evaluation of anxiety) and Warwick-Edinburgh Mental Wellbeing Scale (WEMWBS; for evaluation of mental well-being) were completed by participants. Clinical psychotherapy and statistical suggestions for cutoff scores were used to assign an individual’s mental health metrics level during each session into low (class 0), intermediate (class 1), and high (class 2) levels. Our proposed model was used to objectify evaluation and categorize HHI, STAI, and WEMWBS status of individuals. Classification accuracy of the model was 93.81%, 94.76%, and 95.00% for HHI, STAI, and WEMWBS metrics, respectively. The proposed model can be integrated into applications for home-based mental health monitoring to be used by patients after oncologic surgery to identify patients at risk.

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3