Identifying misdiagnosed bipolar disorder using support vector machine: feature selection based on fMRI of follow-up confirmed affective disorders

Author:

Jiang Xiaowei,Cao BoORCID,Li Chao,Jia Linna,Jing Yi,Cai Wei,Zhao Wenhui,Sun Qikun,Wu Feng,Kong Lingtao,Tang YanqingORCID

Abstract

AbstractNearly a quarter of bipolar disorder (BD) patients were misdiagnosed as major depressive disorder (MDD) patients, which cannot be corrected until mania/hypomania develops. It is important to recognize these obstacles so that the appropriate treatment can be initiated. Thus, we sought to distinguish patients with BD from MDD, especially to identify misdiagnosed BD before mania/hypomania, and further explore potential trait features that allow accurate differential diagnosis independent of state matters. Functional magnetic resonance imaging scans were performed at baseline on 92 MDD patients and 48 BD patients. The MDD patients were then followed up for more than two years. After follow-up, 23 patients transformed into BD (tBD), and 69 patients whose diagnoses remained unchanged were eligible for unipolar depression (UD). A support vector machine classifier was trained on the amygdala-based functional connectivity (FC) of 48 BD and 50 UD patients using a novel region-based feature selection. Then, the classifier was tested on the dataset, encompassing tBD and the remaining UD. It performed well for known BD and UD and can also distinguish tBD from UD with an accuracy of 81%, sensitivity of 82.6%, specificity of 79%, and AUC of 74.6%, respectively. Feature selection results revealed that ten regions within the cortico-limbic neural circuit contributed most to classification. Furthermore, in the FC comparisons among diseases, BD and tBD shared almost overlapped FC patterns in the cortico-limbic neural circuit, and both of them presented pronounced differences in most regions within the circuit compared with UD. The FC values of the most discriminating brain regions had no prominent correlations with the severity of depression, anxiety, and mania/hypomania (FDR correction). It suggests that BD possesses some trait features in the cortico-limbic neural circuit, rendering it dichotomized by the classifier based on known-diagnosis data.

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3