Investigating brain aging trajectory deviations in different brain regions of individuals with schizophrenia using multimodal magnetic resonance imaging and brain-age prediction: a multicenter study

Author:

Zhu Jun-Ding,Wu Yung-Fu,Tsai Shih-JenORCID,Lin Ching-Po,Yang Albert C.ORCID

Abstract

AbstractAlthough many studies on brain-age prediction in patients with schizophrenia have been reported recently, none has predicted brain age based on different neuroimaging modalities and different brain regions in these patients. Here, we constructed brain-age prediction models with multimodal MRI and examined the deviations of aging trajectories in different brain regions of participants with schizophrenia recruited from multiple centers. The data of 230 healthy controls (HCs) were used for model training. Next, we investigated the differences in brain age gaps between participants with schizophrenia and HCs from two independent cohorts. A Gaussian process regression algorithm with fivefold cross-validation was used to train 90, 90, and 48 models for gray matter (GM), functional connectivity (FC), and fractional anisotropy (FA) maps in the training dataset, respectively. The brain age gaps in different brain regions for all participants were calculated, and the differences in brain age gaps between the two groups were examined. Our results showed that most GM regions in participants with schizophrenia in both cohorts exhibited accelerated aging, particularly in the frontal lobe, temporal lobe, and insula. The parts of the white matter tracts, including the cerebrum and cerebellum, indicated deviations in aging trajectories in participants with schizophrenia. However, no accelerated brain aging was noted in the FC maps. The accelerated aging in 22 GM regions and 10 white matter tracts in schizophrenia potentially exacerbates with disease progression. In individuals with schizophrenia, different brain regions demonstrate dynamic deviations of brain aging trajectories. Our findings provided more insights into schizophrenia neuropathology.

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3