Brain microRNAs are associated with variation in cognitive trajectory in advanced age

Author:

Wingo Aliza P.ORCID,Wang Mengli,Liu Jiaqi,Breen Michael S.,Yang Hyun-SikORCID,Tang Beisha,Schneider Julie A.,Seyfried Nicholas T.ORCID,Lah James J.,Levey Allan I.ORCID,Bennett David A.,Jin PengORCID,De Jager Philip L.ORCID,Wingo Thomas S.ORCID

Abstract

AbstractIn advancing age, some individuals maintain a stable cognitive performance over time, while others experience a rapid decline. Such variation in cognitive trajectory is only partially explained by common neurodegenerative pathologies. Hence, we aimed to identify new molecular processes underlying variation in cognitive trajectory using brain microRNA profile followed by an integrative analysis with brain transcriptome and proteome. Individual cognitive trajectories were derived from longitudinally assessed cognitive-test scores of older-adult brain donors from four longitudinal cohorts. Postmortem brain microRNA profiles, transcriptomes, and proteomes were derived from the dorsolateral prefrontal cortex. The global microRNA association study of cognitive trajectory was performed in a discovery (n = 454) and replication cohort (n = 134), followed by a meta-analysis that identified 6 microRNAs. Among these, miR-132-3p and miR-29a-3p were most significantly associated with cognitive trajectory. They explain 18.2% and 2.0% of the variance of cognitive trajectory, respectively, and act independently of the eight measured neurodegenerative pathologies. Furthermore, integrative transcriptomic and proteomic analyses revealed that miR-132-3p was significantly associated with 24 of the 47 modules of co-expressed genes of the transcriptome, miR-29a-3p with 3 modules, and identified 84 and 214 downstream targets of miR-132-3p and miR-29a-3p, respectively, in cognitive trajectory. This is the first global microRNA study of cognitive trajectory to our knowledge. We identified miR-29a-3p and miR-132-3p as novel and robust contributors to cognitive trajectory independently of the eight known cerebral pathologies. Our findings lay a foundation for future studies investigating mechanisms and developing interventions to enhance cognitive stability in advanced age.

Funder

U.S. Department of Health & Human Services | NIH | National Institute on Aging

U.S. Department of Veterans Affairs

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3