Abstract
AbstractThe stressful extrauterine environment following premature birth likely has far-reaching and persistent adverse consequences. The effects of early “third-trimester” ex utero stress on large-scale brain networks’ covariance patterns may provide a potential avenue to understand how early-life stress following premature birth increases risk or resilience. We evaluated the impact of early-life stress exposure (e.g., quantification of invasive procedures) on maturational covariance networks (MCNs) between 30 and 40 weeks of gestational age in 180 extremely preterm-born infants (<28 weeks of gestation; 43.3% female). We constructed MCNs using covariance of gray matter volumes between key nodes of three large-scale brain networks: the default mode network (DMN), executive control network (ECN), and salience network (SN). Maturational coupling was quantified by summating the number of within- and between-network connections. Infants exposed to high stress showed significantly higher SN but lower DMN maturational coupling, accompanied by DMN-SN decoupling. Within the SN, the insula, amygdala, and subthalamic nucleus all showed higher maturational covariance at the nodal level. In contrast, within the DMN, the hippocampus, parahippocampal gyrus, and fusiform showed lower coupling following stress. The decoupling between DMN-SN was observed between the insula/anterior cingulate cortex and posterior parahippocampal gyrus. Early-life stress showed longitudinal network-specific maturational covariance patterns, leading to a reprioritization of developmental trajectories of the SN at the cost of the DMN. These alterations may enhance the ability to cope with adverse stimuli in the short term but simultaneously render preterm-born individuals at a higher risk for stress-related psychopathology later in life.
Funder
Wilhelmina Children's Hospital
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
European Research Council grant
European Research Council
Publisher
Springer Science and Business Media LLC
Subject
Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health
Reference103 articles.
1. Montagna A, Nosarti C. Socio-emotional development following very preterm birth: pathways to psychopathology. Front Psychol. 2016;7:1–23.
2. Lammertink F, Vinkers CH, Tataranno ML, Benders MJNL. Premature birth and developmental programming: mechanisms of resilience and vulnerability. Front Psychiatry. 2021;11:531571.
3. Hermans EJ, Henckens MJAG, Joëls M, Fernández G. Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends Neurosci. 2014;37:304–14.
4. Mechelli A, Friston KJ, Frackowiak RS, Price CJ. Structural covariance in the human cortex. J Neurosci. 2005;25:8303–10.
5. Saeed N, Cowan FM, Rutherford MA, Edwards AD. Reduced development of cerebral cortex in extremely preterm infants. Seven. 2000;356:1999–2000.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献