Brain tissue- and cell type-specific eQTL Mendelian randomization reveals efficacy of FADS1 and FADS2 on cognitive function

Author:

Wu Xueyan,Jiang Lei,Qi Hongyan,Hu Chunyan,Jia Xiaojing,Lin Hong,Wang Shuangyuan,Lin Lin,Zhang Yifang,Zheng Ruizhi,Li Mian,Wang Tiange,Zhao Zhiyun,Xu Min,Xu Yu,Chen Yuhong,Zheng JieORCID,Bi YufangORCID,Lu JieliORCID

Abstract

AbstractEpidemiological studies suggested an association between omega-3 fatty acids and cognitive function. However, the causal role of the fatty acid desaturase (FADS) gene, which play a key role in regulating omega-3 fatty acids biosynthesis, on cognitive function is unclear. Hence, we used two-sample Mendelian randomization (MR) to estimate the gene-specific causal effect of omega-3 fatty acids (N = 114,999) on cognitive function (N = 300,486). Tissue- and cell type-specific effects of FADS1/FADS2 expression on cognitive function were estimated using brain tissue cis-expression quantitative trait loci (cis-eQTL) datasets (GTEx, N ≤ 209; MetaBrain, N ≤ 8,613) and single cell cis-eQTL data (N = 373), respectively. These causal effects were further evaluated in whole blood cis-eQTL data (N ≤ 31,684). A series of sensitivity analyses were conducted to validate MR assumptions. Leave-one-out MR showed a FADS gene-specific effect of omega-3 fatty acids on cognitive function [β = −1.3 × 10−2, 95% confidence interval (CI) (−2.2 × 10−2, −5 × 10−3), P = 2 × 10−3]. Tissue-specific MR showed an effect of increased FADS1 expression in cerebellar hemisphere and FADS2 expression in nucleus accumbens basal ganglia on maintaining cognitive function, while decreased FADS1 expression in nine brain tissues on maintaining cognitive function [colocalization probability (PP.H4) ranged from 71.7% to 100.0%]. Cell type-specific MR showed decreased FADS1/FADS2 expression in oligodendrocyte was associated with maintaining cognitive function (PP.H4 = 82.3%, respectively). Increased FADS1/FADS2 expression in whole blood showed an effect on cognitive function maintenance (PP.H4 = 86.6% and 88.4%, respectively). This study revealed putative causal effect of FADS1/FADS2 expression in brain tissues and blood on cognitive function. These findings provided evidence to prioritize FADS gene as potential target gene for maintenance of cognitive function.

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3