5-HT2A receptor dysregulation in a schizophrenia relevant mouse model of NMDA receptor hypofunction

Author:

Nakao Kazuhito,Singh Mahendra,Sapkota Kiran,Fitzgerald Andrew,Hablitz John J.,Nakazawa Kazu

Abstract

AbstractBlockade of N-methyl-D-aspartate receptors (NMDAR) is known to augment cortical serotonin 2A receptors (5-HT2ARs), which is implicated in psychosis. However, the pathways from NMDAR hypofunction to 5-HT2AR up-regulation are unclear. Here we addressed in mice whether genetic deletion of the indispensable NMDAR-subunit Grin1 principally in corticolimbic parvalbumin-positive fast-spiking interneurons, could up-regulate 5-HT2ARs leading to cortical hyper-excitability. First, in vivo local-field potential recording revealed that auditory cortex in Grin1 mutant mice became hyper-excitable upon exposure to acoustic click-train stimuli that release 5-HT in the cortex. This excitability increase was reproduced ex vivo where it consisted of an increased frequency of action potential (AP) firing in layer 2/3 pyramidal neurons of mutant auditory cortex. Application of the 5-HT2AR agonist TCB-2 produced similar results. The effect of click-trains was reversed by the 5-HT2AR antagonist M100907 both in vivo and ex vivo. Increase in AP frequency of pyramidal neurons was also reversed by application of Gαq protein inhibitor BIM-46187 and G protein-gated inwardly-rectifying K+ (GIRK) channel activator ML297. In fast-spiking interneurons, 5-HT2AR activation normally promotes GABA release, contributing to decreased excitability of postsynaptic pyramidal neurons, which was missing in the mutants. Moreover, unlike the controls, the GABAA receptor antagonist (+)-bicuculline had little effect on AP frequency of mutant pyramidal neurons, indicating a disinhibition state. These results suggest that the auditory-induced hyper-excitable state is conferred via GABA release deficits from Grin1-lacking interneurons leading to 5-HT2AR dysregulation and GIRK channel suppression in cortical pyramidal neurons, which could be involved in auditory psychosis.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of Mental Health

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3