Out with AI, in with the psychiatrist: a preference for human-derived clinical decision support in depression care

Author:

Maslej Marta M.ORCID,Kloiber StefanORCID,Ghassemi Marzyeh,Yu Joanna,Hill Sean L.ORCID

Abstract

AbstractAdvancements in artificial intelligence (AI) are enabling the development of clinical support tools (CSTs) in psychiatry to facilitate the review of patient data and inform clinical care. To promote their successful integration and prevent over-reliance, it is important to understand how psychiatrists will respond to information provided by AI-based CSTs, particularly if it is incorrect. We conducted an experiment to examine psychiatrists’ perceptions of AI-based CSTs for treating major depressive disorder (MDD) and to determine whether perceptions interacted with the quality of CST information. Eighty-three psychiatrists read clinical notes about a hypothetical patient with MDD and reviewed two CSTs embedded within a single dashboard: the note’s summary and a treatment recommendation. Psychiatrists were randomised to believe the source of CSTs was either AI or another psychiatrist, and across four notes, CSTs provided either correct or incorrect information. Psychiatrists rated the CSTs on various attributes. Ratings for note summaries were less favourable when psychiatrists believed the notes were generated with AI as compared to another psychiatrist, regardless of whether the notes provided correct or incorrect information. A smaller preference for psychiatrist-generated information emerged in ratings of attributes that reflected the summary’s accuracy or its inclusion of important information from the full clinical note. Ratings for treatment recommendations were also less favourable when their perceived source was AI, but only when recommendations were correct. There was little evidence that clinical expertise or familiarity with AI impacted results. These findings suggest that psychiatrists prefer human-derived CSTs. This preference was less pronounced for ratings that may have prompted a deeper review of CST information (i.e. a comparison with the full clinical note to evaluate the summary’s accuracy or completeness, assessing an incorrect treatment recommendation), suggesting a role of heuristics. Future work should explore other contributing factors and downstream implications for integrating AI into psychiatric care.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research

Krembil Foundation

CAMH Discovery Fund

Max Bell Foundation

Ontario Ministry of Health and Long-Term Care

Labatt Family Innovation Fund in Brain Health (Department of Psychiatry, University of Toronto), Canadian Centre on Substance Use and Addiction

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3