Multiple measurement analysis of resting-state fMRI for ADHD classification in adolescent brain from the ABCD study

Author:

Wang Zhaobin,Zhou XiaochengORCID,Gui Yuanyuan,Liu ManhuaORCID,Lu HuiORCID

Abstract

AbstractAttention deficit hyperactivity disorder (ADHD) is one of the most common psychiatric disorders in school-aged children. Its accurate diagnosis looks after patients’ interests well with effective treatment, which is important to them and their family. Resting-state functional magnetic resonance imaging (rsfMRI) has been widely used to characterize the abnormal brain function by computing the voxel-wise measures and Pearson’s correlation (PC)-based functional connectivity (FC) for ADHD diagnosis. However, exploring the powerful measures of rsfMRI to improve ADHD diagnosis remains a particular challenge. To this end, this paper proposes an automated ADHD classification framework by fusion of multiple measures of rsfMRI in adolescent brain. First, we extract the voxel-wise measures and ROI-wise time series from the brain regions of rsfMRI after preprocessing. Then, to extract the multiple functional connectivities, we compute the PC-derived FCs including the topographical information-based high-order FC (tHOFC) and dynamics-based high-order FC (dHOFC), the sparse representation (SR)-derived FCs including the group SR (GSR), the strength and similarity guided GSR (SSGSR), and sparse low-rank (SLR). Finally, these measures are combined with multiple kernel learning (MKL) model for ADHD classification. The proposed method is applied to the Adolescent Brain and Cognitive Development (ABCD) dataset. The results show that the FCs of dHOFC and SLR perform better than the others. Fusing multiple measures achieves the best classification performance (AUC = 0.740, accuracy = 0.6916), superior to those from the single measure and the previous studies. We have identified the most discriminative FCs and brain regions for ADHD diagnosis, which are consistent with those of published literature.

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3