Biomarker and genomic analyses reveal molecular signatures of non-cardioembolic ischemic stroke

Author:

Ding LinglingORCID,Liu Yu,Meng Xia,Jiang Yong,Lin Jinxi,Cheng Si,Xu Zhe,Zhao Xingquan,Li Hao,Wang Yongjun,Li Zixiao

Abstract

AbstractAcute ischemic stroke (AIS) is a major cause of disability and mortality worldwide. Non-cardioembolic ischemic stroke (NCIS), which constitutes the majority of AIS cases, is highly heterogeneous, thus requiring precision medicine treatments. This study aimed to investigate the molecular mechanisms underlying NCIS heterogeneity. We integrated data from the Third China National Stroke Registry, including clinical phenotypes, biomarkers, and whole-genome sequencing data for 7695 patients with NCIS. We identified 30 molecular clusters based on 63 biomarkers and explored the comprehensive landscape of biological heterogeneity and subpopulations in NCIS. Dimensionality reduction revealed fine-scale subpopulation structures associated with specific biomarkers. The subpopulations with biomarkers for inflammation, abnormal liver and kidney function, homocysteine metabolism, lipid metabolism, and gut microbiota metabolism were associated with a high risk of unfavorable clinical outcomes, including stroke recurrence, disability, and mortality. Several genes encoding potential drug targets were identified as putative causal genes that drive the clusters, such as CDK10, ERCC3, and CHEK2. We comprehensively characterized the genetic architecture of these subpopulations, identified their molecular signatures, and revealed the potential of the polybiomarkers and polygenic prediction for assessing clinical outcomes. Our study demonstrates the power of large-scale molecular biomarkers and genomics to understand the underlying biological mechanisms of and advance precision medicine for NCIS.

Funder

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Beijing Municipal Science and Technology Commission

Chinese Academy of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3