A novel alternative for pyrogen detection based on a transgenic cell line

Author:

He Qing,Yu Chuan-Fei,Wu Gang,Wang Kai-Qin,Ni Yong-Bo,Guo Xiao,Fu Zhi-Hao,Wang Lan,Tan De-Jiang,Gao Hua,Wang Can,Chen Gang,Chen Xu-Hong,Chen Bo,Wang Jun-Zhi

Abstract

AbstractPyrogen, often as a contaminant, is a key indicator affecting the safety of almost all parenteral drugs (including biologicals, chemicals, traditional Chinese medicines and medical devices). It has become a goal to completely replace the in vivo rabbit pyrogen test by using the in vitro pyrogen test based on the promoted ‘reduction, replacement and refinement’ principle, which has been highly considered by regulatory agencies from different countries. We used NF-κB, a central signalling molecule mediating inflammatory responses, as a pyrogenic marker and the monocyte line THP-1 transfected with a luciferase reporter gene regulated by NF-κB as an in vitro model to detect pyrogens by measuring the intensity of a fluorescence signal. Here, we show that this test can quantitatively and sensitively detect endotoxin (lipopolysaccharide from different strains) and nonendotoxin (lipoteichoic acid, zymosan, peptidoglycan, lectin and glucan), has good stability in terms of NF-κB activity and cell phenotypes at 39 cell passages and can be applied to detect pyrogens in biologicals (group A & C meningococcal polysaccharide vaccine; basiliximab; rabies vaccine (Vero cells) for human use, freeze-dried; Japanese encephalitis vaccine (Vero cells), inactivated; insulin aspart injection; human albumin; recombinant human erythropoietin injection (CHO Cell)). The within-laboratory reproducibility of the test in three independent laboratories was 85%, 80% and 80% and the interlaboratory reproducibility among laboratories was 83.3%, 95.6% and 86.7%. The sensitivity (true positive rate) and specificity (true negative rate) of the test were 89.9% and 90.9%, respectively. In summary, the test provides a novel alternative for pyrogen detection.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3