Integrating single-cell RNA sequencing with spatial transcriptomics reveals immune landscape for interstitial cystitis

Author:

Peng Liao,Jin Xi,Li Bo-ya,Zeng Xiao,Liao Bang-hua,Jin Tao,Chen Jia-wei,Gao Xiao-shuai,Wang Wei,He Qing,Chen Guo,Gong Li-Na,Shen Hong,Wang Kun-jie,Li Hong,Luo De-yi

Abstract

AbstractInterstitial cystitis (IC) is a severely debilitating and chronic disorder with unclear etiology and pathophysiology, which makes the diagnosis difficult and treatment challenging. To investigate the role of immunity in IC bladders, we sequenced 135,091 CD45+ immune cells from 15 female patients with IC and 9 controls with stress urinary incontinence using single-cell RNA sequencing (scRNA-seq). 22 immune subpopulations were identified in the constructed landscape. Among them, M2-like macrophages, inflammatory CD14+ macrophages, and conventional dendritic cells had the most communications with other immune cells. Then, a significant increase of central memory CD4+ T cells, regulatory T cells, GZMK+CD8+ T cells, activated B cells, un-switched memory B cells, and neutrophils, and a significant decrease of CD8+ effector T cells, Th17 cells, follicular helper T cells, switched memory B cells, transitional B cells, and macrophages were noted in IC bladders. The enrichment analysis identified a virus-related response during the dynamic change of cell proportion, furthermore, the human polyomavirus-2 was detected with a positive rate of 95% in urine of patients with IC. By integrating the results of scRNA-seq with spatial transcriptomics, we found nearly all immune subpopulations were enriched in the urothelial region or located close to fibroblasts in IC bladders, but they were discovered around urothelium and smooth muscle cells in control bladders. These findings depict the immune landscape for IC and might provide valuable insights into the pathophysiology of IC.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3