Author:
Fan Tengfei,Wang Xiaoning,Zhang Sheng,Deng Ping,Jiang Yi,Liang Yidan,Jie Sheng,Wang Qing,Li Chuwen,Tian Guocai,Zhang Zhen,Ren Zhenhu,Li Bo,Chen Yanrong,He Zhijing,Luo Yan,Chen Mingliang,Wu Hanjiang,Yu Zhengping,Pi Huifeng,Zhou Zhou,Zhang Zhiyuan
Abstract
AbstractOral squamous cell carcinoma (OSCC) is the most common type of oral malignancy, and metastasis accounts for the poor prognosis of OSCC. Autophagy is considered to facilitate OSCC development by mitigating various cellular stresses; nevertheless, the mechanisms of autophagy in OSCC cell proliferation and metastasis remain unknown. In our study, high-sensitivity label-free quantitative proteomics analysis revealed nuclear protein 1 (NUPR1) as the most significantly upregulated protein in formalin-fixed paraffin-embedded tumour samples derived from OSCC patients with or without lymphatic metastasis. Moreover, NUPR1 is aberrantly expressed in the OSCC tissues and predicts low overall survival rates for OSCC patients. Notably, based on tandem mass tag-based quantitative proteomic analysis between stable NUPR1 knockdown OSCC cells and scrambled control OSCC cells, we confirmed that NUPR1 maintained autophagic flux and lysosomal functions by directly increasing transcription factor E3 (TFE3) activity, which promoted OSCC cell proliferation and metastasis in vitro and in vivo. Collectively, our data revealed that the NUPR1–TFE3 axis is a critical regulator of the autophagic machinery in OSCC progression, and this study may provide a potential therapeutic target for the treatment of OSCC.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献