NPRC deletion mitigated atherosclerosis by inhibiting oxidative stress, inflammation and apoptosis in ApoE knockout mice

Author:

Cheng Cheng,Zhang Jie,Li Xiaodong,Xue Fei,Cao Lei,Meng Linlin,Sui WenhaiORCID,Zhang Meng,Zhao Yuxia,Xi Bo,Yu Xiao,Xu Feng,Yang Jianmin,Zhang YunORCID,Zhang ChengORCID

Abstract

AbstractPrevious studies suggested a beneficial effect of natriuretic peptides in animal models of cardiovascular disease, but the role of natriuretic peptide receptor C (NPRC) in the pathogenesis of atherosclerosis (AS) remains unknown. This study was designed to test the hypothesis that NPRC may promote AS lesion formation and instability by enhancing oxidative stress, inflammation, and apoptosis via protein kinase A (PKA) signaling. ApoE−/− mice were fed chow or Western diet for 12 weeks and NPRC expression was significantly increased in the aortic tissues of Western diet-fed mice. Systemic NPRC knockout mice were crossed with ApoE−/− mice to generate ApoE−/−NPRC−/− mice, and NPRC deletion resulted in a significant decrease in the size and instability of aortic atherosclerotic lesions in ApoE−/−NPRC−/− versus ApoE−/− mice. In addition, endothelial cell-specific NPRC knockout attenuated atherosclerotic lesions in mice. In contrast, endothelial cell overexpression of NPRC aggravated the size and instability of atherosclerotic aortic lesions in mice. Experiments in vitro showed that NPRC knockdown in human aortic endothelial cells (HAECs) inhibited ROS production, pro-inflammatory cytokine expression and endothelial cell apoptosis, and increased eNOS expression. Furthermore, NPRC knockdown in HAECs suppressed macrophage migration, cytokine expression, and phagocytosis via its effects on endothelial cells. On the contrary, NPRC overexpression in endothelial cells resulted in opposite effects. Mechanistically, the anti-inflammation and anti-atherosclerosis effects of NPRC deletion involved activation of cAMP/PKA pathway, leading to downstream upregulated AKT1 pathway and downregulated NF-κB pathway. In conclusion, NPRC deletion reduced the size and instability of atherosclerotic lesions in ApoE−/− mice via attenuating inflammation and endothelial cell apoptosis and increasing eNOS expression by modulating cAMP/PKA-AKT1 and NF-κB pathways. Thus, targeting NPRC may provide a promising approach to the prevention and treatment of atherosclerosis.

Funder

National Science Foundation of China | Key Programme

Taishan Scholar Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3