Tauopathy promotes spinal cord-dependent production of toxic amyloid-beta in transgenic monkeys

Author:

Tu Zhuchi,Yan SenORCID,Han Bofeng,Li Caijuan,Liang Weien,Lin Yingqi,Ding Yongyan,Wei Huiyi,Wang Lu,Xu Hao,Ye Jianmeng,Li Bang,Li ShihuaORCID,Li Xiao-Jiang

Abstract

AbstractTauopathy, characterized by the hyperphosphorylation and accumulation of the microtubule-associated protein tau, and the accumulation of Aβ oligomers, constitute the major pathological hallmarks of Alzheimer’s disease. However, the relationship and causal roles of these two pathological changes in neurodegeneration remain to be defined, even though they occur together or independently in several neurodegenerative diseases associated with cognitive and movement impairment. While it is widely accepted that Aβ accumulation leads to tauopathy in the late stages of the disease, it is still unknown whether tauopathy influences the formation of toxic Aβ oligomers. To address this, we generated transgenic cynomolgus monkey models expressing Tau (P301L) through lentiviral infection of monkey embryos. These monkeys developed age-dependent neurodegeneration and motor dysfunction. Additionally, we performed a stereotaxic injection of adult monkey and mouse brains to express Tau (P301L) via AAV9 infection. Importantly, we found that tauopathy resulting from embryonic transgenic Tau expression or stereotaxic brain injection of AAV-Tau selectively promoted the generation of Aβ oligomers in the monkey spinal cord. These Aβ oligomers were recognized by several antibodies to Aβ1–42 and contributed to neurodegeneration. However, the generation of Aβ oligomers was not observed in other brain regions of Tau transgenic monkeys or in the brains of mice injected with AAV9-Tau (P301L), suggesting that the generation of Aβ oligomers is species- and brain region-dependent. Our findings demonstrate for the first time that tauopathy can trigger Aβ pathology in the primate spinal cord and provide new insight into the pathogenesis and treatment of tauopathy.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3