Abstract
AbstractVaccines have proven effective in protecting populations against COVID-19, including the recombinant COVID-19 vaccine (Sf9 cells), the first approved recombinant protein vaccine in China. In this positive-controlled trial with 85 adult participants (Sf9 cells group: n = 44; CoronaVac group: n = 41), we evaluated the safety, immunogenicity, and protective effectiveness of a heterologous boost with the Sf9 cells vaccine in adults who had been vaccinated with the inactivated vaccine, and found a post-booster adverse events rate of 20.45% in the Sf9 cells group and 31.71% in the CoronaVac group (p = 0.279), within 28 days after booster injection. Neither group reported any severe adverse events. Following the Sf9 cells vaccine booster, the geometric mean titer (GMT) of binding antibodies to the receptor-binding domain of prototype SARS-CoV-2 on day 28 post-booster was significantly higher than that induced by the CoronaVac vaccine booster (100,683.37 vs. 9,451.69, p < 0.001). In the Sf9 cells group, GMTs of neutralizing antibodies against pseudo SARS-CoV-2 viruses (prototype and diverse variants of concern [VOCs]) increased by 22.23–75.93 folds from baseline to day 28 post-booster, while the CoronaVac group showed increases of only 3.29–10.70 folds. Similarly, neutralizing antibodies against live SARS-CoV-2 viruses (prototype and diverse VOCs) increased by 68.18–192.67 folds on day 14 post-booster compared with the baseline level, significantly greater than the CoronaVac group (19.67–37.67 folds). A more robust Th1 cellular response was observed with the Sf9 cells booster on day 14 post-booster (mean IFN-γ+ spot-forming cells per 2 × 105 peripheral blood mononuclear cells: 26.66 vs. 13.59). Protective effectiveness against symptomatic COVID-19 was approximately twice as high in the Sf9 cells group compared to the CoronaVac group (68.18% vs. 36.59%, p = 0.004). Our study findings support the high protective effectiveness of heterologous boosting with the recombinant COVID-19 vaccine (Sf9 cells) against symptomatic COVID-19 of diverse SARS-CoV-2 variants of concern, while causing no apparent safety concerns.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference37 articles.
1. WHO World Health Organization. WHO coronavirus disease (COVID-19) dashboard. https://covid19.who.int/.
2. WHO World Health Organization. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
3. Watson, O. J. et al. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet. Infect. Dis. 22, 1293–1302 (2022).
4. National Medical Products Administration. https://www.nmpa.gov.cn/datasearch/search-result.html.
5. Corbett, K. S. et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N. Engl. J. Med. 383, 1544–1555 (2020).