Abstract
AbstractSpinal cord injury (SCI) is a severe damage usually leading to limb dysesthesia, motor dysfunction, and other physiological disability. We have previously shown that NT3-chitosan could trigger an acute SCI repairment in rats and non-human primates. Due to the negative effect of inhibitory molecules in glial scar on axonal regeneration, however, the role of NT3-chitosan in the treatment of chronic SCI remains unclear. Compared with the fresh wound of acute SCI, how to handle the lesion core and glial scars is a major issue related to chronic-SCI repair. Here we report, in a chronic complete SCI rat model, establishment of magnetic resonance-diffusion tensor imaging (MR-DTI) methods to monitor spatial and temporal changes of the lesion area, which matched well with anatomical analyses. Clearance of the lesion core via suction of cystic tissues and trimming of solid scar tissues before introducing NT3-chitosan using either a rigid tubular scaffold or a soft gel form led to robust neural regeneration, which interconnected the severed ascending and descending axons and accompanied with electrophysiological and motor functional recovery. In contrast, cystic tissue extraction without scar trimming followed by NT3-chitosan injection, resulted in little, if any regeneration. Taken together, after lesion core clearance, NT3-chitosan can be used to enable chronic-SCI repair and MR-DTI-based mapping of lesion area and monitoring of ongoing regeneration can potentially be implemented in clinical studies for subacute/chronic-SCI repair.
Funder
Ministry of Science and Technology of the People's Republic of China
National Natural Science Foundation of China
Fundamental Research Funds for Central Public Welfare Research Institutes
Natural Science Foundation of Beijing Municipality
Beijing Science and Technology Program
Priority of Shanghai Key Discipline of Medicine
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. McKeon, R. J., Schreiber, R. C., Rudge, J. S. & Silver, J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 11, 3398–3411 (1991).
2. Bunge, R. P., Puckett, W. R. & Hiester, E. D. Observations on the pathology of several types of human spinal cord injury, with emphasis on the astrocyte response to penetrating injuries. Adv. Neurol. 72, 305–315 (1997).
3. Dawson, M. R., Levine, J. M. & Reynolds, R. NG2-expressing cells in the central nervous system: are they oligodendroglial progenitors? J. Neurosci. Res. 61, 471–479 (2000).
4. Fawcett, J. W. & Asher, R. A. The glial scar and central nervous system repair. Brain Res. Bull. 49, 377–391 (1999).
5. Bradbury, E. J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002).
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献