FFAR4 improves the senescence of tubular epithelial cells by AMPK/SirT3 signaling in acute kidney injury

Author:

Yang Letian,Wang Bo,Guo FanORCID,Huang Rongshuang,Liang Yan,Li Lingzhi,Tao Sibei,Yin Ting,Fu PingORCID,Ma LiangORCID

Abstract

AbstractAcute kidney injury (AKI) is a serious clinical complication with high morbidity and mortality rates. Despite substantial progress in understanding the mechanism of AKI, no effective therapy is available for treatment or prevention. We previously found that G protein-coupled receptor (GPCR) family member free fatty acid receptor 4 (FFAR4) agonist TUG891 alleviated kidney dysfunction and tubular injury in AKI mice. However, the versatile role of FFAR4 in kidney has not been well characterized. In the study, the expression of FFAR4 was abnormally decreased in tubular epithelial cells (TECs) of cisplatin, cecal ligation/perforation and ischemia/reperfusion injury-induced AKI mice, respectively. Systemic and conditional TEC-specific knockout of FFAR4 aggravated renal function and pathological damage, whereas FFAR4 activation by TUG-891 alleviated the severity of disease in cisplatin-induced AKI mice. Notably, FFAR4, as a key determinant, was firstly explored to regulate cellular senescence both in injured kidneys of AKI mice and TECs, which was indicated by senescence-associated β-galactosidase (SA-β-gal) activity, marker protein p53, p21, Lamin B1, phospho-histone H2A.X, phospho-Rb expression, and secretory phenotype IL-6 level. Mechanistically, pharmacological activation and overexpression of FFAR4 reversed the decrease of aging-related SirT3 protein, where FFAR4 regulated SirT3 expression to exhibit anti-senescent effect via Gq subunit-mediated CaMKKβ/AMPK signaling in cisplatin-induced mice and TECs. These findings highlight the original role of tubular FFAR4 in cellular senescence via AMPK/SirT3 signaling and identify FFAR4 as a potential drug target against AKI.

Funder

Department of Science and Technology of Sichuan Province

Sichuan University

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3