Temporospatial inhibition of Erk signaling is required for lymphatic valve formation

Author:

Meng Yaping,Lv Tong,Zhang Junfeng,Shen Weimin,Li Lifang,Li Yaqi,Liu Xin,Lei Xing,Lin Xuguang,Xu Hanfang,Meng AnmingORCID,Jia ShunjiORCID

Abstract

AbstractIntraluminal lymphatic valves (LVs) and lymphovenous valves (LVVs) are critical to ensure the unidirectional flow of lymphatic fluid. Morphological abnormalities in these valves always cause lymph or blood reflux, and result in lymphedema. However, the underlying molecular mechanism of valve development remains poorly understood. We here report the implication of Efnb2-Ephb4-Rasa1 regulated Erk signaling axis in lymphatic valve development with identification of two new valve structures. Dynamic monitoring of phospho-Erk activity indicated that Erk signaling is spatiotemporally inhibited in some lymphatic endothelial cells (LECs) during the valve cell specification. Inhibition of Erk signaling via simultaneous depletion of zygotic erk1 and erk2 or treatment with MEK inhibitor selumetinib causes lymphatic vessel hypoplasia and lymphatic valve hyperplasia, suggesting opposite roles of Erk signaling during these two processes. ephb4b mutants, efnb2a;efnb2b or rasa1a;rasa1b double mutants all have defective LVs and LVVs and exhibit blood reflux into lymphatic vessels with an edema phenotype. Importantly, the valve defects in ephb4b or rasa1a;rasa1b mutants are mitigated with high-level gata2 expression in the presence of MEK inhibitors. Therefore, Efnb2-Ephb4 signaling acts to suppress Erk activation in valve-forming cells to promote valve specification upstream of Rasa1. Not only do our findings reveal a molecular mechanism of lymphatic valve formation, but also provide a basis for the treatment of lymphatic disorders.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3