Identification of heptapeptides targeting a lethal bacterial strain in septic mice through an integrative approach

Author:

Zhang Xiaoyan,Li Shan,Luo Haihua,He Shuyue,Yang Huangda,Li Lei,Tian Tian,Han Qizheng,Ye Jiacong,Huang Chenyang,Liu Aihua,Jiang YongORCID

Abstract

AbstractEffectively killing pathogenic bacteria is key for the treatment of sepsis. Although various anti-infective drugs have been used for the treatment of sepsis, the therapeutic effect is largely limited by the lack of a specific bacterium-targeting delivery system. This study aimed to develop antibacterial peptides that specifically target pathogenic bacteria for the treatment of sepsis. The lethal bacterial strain Escherichia coli MSI001 was isolated from mice of a cecal ligation and puncture (CLP) model and was used as a target to screen bacterial binding heptapeptides through an integrative bioinformatics approach based on phage display technology and high-throughput sequencing (HTS). Heptapeptides binding to E. coli MSI001 with high affinity were acquired after normalization by the heptapeptide frequency of the library. A representative heptapeptide VTKLGSL (VTK) was selected for fusion with the antibacterial peptide LL-37 to construct the specific-targeting antibacterial peptide VTK-LL37. We found that, in comparison with LL37, VTK-LL37 showed prominent bacteriostatic activity and an inhibitive effect on biofilm formation in vitro. In vivo experiments demonstrated that VTK-LL37 significantly inhibited bacterial growth, reduced HMGB1 expression, alleviated lesions of vital organs and improved the survival of mice subjected to CLP modeling. Furthermore, membrane DEGP and DEGQ were identified as VTK-binding proteins by proteomic methods. This study provides a novel strategy for targeted pathogen killing, which is helpful for the treatment of sepsis in the era of precise medicine.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3