Cholangiocarcinoma combined with biliary obstruction: an exosomal circRNA signature for diagnosis and early recurrence monitoring

Author:

Wen Ningyuan,Peng Dingzhong,Xiong Xianze,Liu Geng,Nie Guilin,Wang Yaoqun,Xu Jianrong,Wang Shaofeng,Yang Sishu,Tian Yuan,Li Bei,Lu Jiong,Cheng Nansheng

Abstract

AbstractCholangiocarcinoma (CCA) is a highly malignant biliary tract cancer with currently suboptimal diagnostic and prognostic approaches. We present a novel system to monitor CCA using exosomal circular RNA (circRNA) via serum and biliary liquid biopsies. A pilot cohort consisting of patients with CCA-induced biliary obstruction (CCA-BO, n = 5) and benign biliary obstruction (BBO, n = 5) was used to identify CCA-derived exosomal circRNAs through microarray analysis. This was followed by a discovery cohort (n = 20) to further reveal a CCA-specific circRNA complex (hsa-circ-0000367, hsa-circ-0021647, and hsa-circ-0000288) in both bile and serum exosomes. In vitro and in vivo studies revealed the three circRNAs as promoters of CCA invasiveness. Diagnostic and prognostic models were established and verified by two independent cohorts (training cohort, n = 184; validation cohort, n = 105). An interpreter-free diagnostic model disclosed the diagnostic power of biliary exosomal circRNA signature (Bile-DS, AUROC = 0.947, RR = 6.05) and serum exosomal circRNA signature (Serum-DS, AUROC = 0.861, RR = 4.04) compared with conventional CA19-9 (AUROC = 0.759, RR = 2.08). A prognostic model of CCA undergoing curative-intent surgery was established by calculating early recurrence score, verified with bile samples (Bile-ERS, C-index=0.783) and serum samples (Serum-ERS, C-index = 0.782). These models, combined with other prognostic factors revealed by COX-PH model, enabled the establishment of nomograms for recurrence monitoring of CCA. Our study demonstrates that the exosomal triple-circRNA panel identified in both bile and serum samples serves as a novel diagnostic and prognostic tool for the clinical management of CCA.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3