CNTNAP2 intracellular domain (CICD) generated by γ-secretase cleavage improves autism-related behaviors

Author:

Zhang Jing,Cai Fang,Lu Renbin,Xing Xiaoliang,Xu LuORCID,Wu Kunyang,Gong Zishan,Zhang Qing,Zhang Yun,Xing Mengen,Song WeihongORCID,Li Jia-Da

Abstract

AbstractAs the most prevalent neurodevelopmental disorders in children, autism spectrum disorders (ASD) are characterized by deficits in language development, social interaction, and repetitive behaviors or inflexible interests. Contactin associated protein like 2 (CNTNAP2), encoding a single transmembrane protein (CNTNAP2) with 1331 amino acid residues, is a widely validated ASD-susceptible gene. Cntnap2-deficient mice also show core autism-relevant behaviors, including the social deficits and repetitive behavior. However, the cellular mechanisms underlying dysfunction CNTNAP2 and ASD remain elusive. In this study, we found a motif within the transmembrane domain of CNTNAP2 was highly homologous to the γ-secretase cleavage site of amyloid-β precursor protein (APP), suggesting that CNTNAP2 may undergo proteolytic cleavage. Further biochemical analysis indicated that CNTNAP2 is cleaved by γ-secretase to produce the CNTNAP2 intracellular domain (CICD). Virally delivery of CICD to the medial prefrontal cortex (mPFC) in Cntnap2-deficient (Cntnap2−/−) mice normalized the deficit in the ASD-related behaviors, including social deficit and repetitive behaviors. Furthermore, CICD promoted the nuclear translocation of calcium/calmodulin-dependent serine protein kinase (CASK) to regulate the transcription of genes, such as Prader Willi syndrome gene Necdin. Whereas Necdin deficiency led to reduced social interaction in mice, virally expression of Necdin in the mPFC normalized the deficit in social preference of Cntnap2−/− mice. Our results thus reveal a critical function of CICD and highlight a role of the CNTNAP2-CASK-Necdin signaling pathway in ASD.

Funder

National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3