A novel role of LRP5 in tubulointerstitial fibrosis through activating TGF-β/Smad signaling

Author:

He Xuemin,Cheng Rui,Huang Chao,Takahashi Yusuke,Yang Yanhui,Benyajati Siribhinya,Chen Yanming,Zhang Xin A.,Ma Jian-xing

Abstract

AbstractPrevious studies by us and others demonstrated that activation of Wnt/β-catenin signaling plays a pathogenic role in chronic kidney diseases (CKD). Wnt co-receptor LRP5 variants are reported to associate with autosomal dominant polycystic kidney disease; but their exact roles in this disease and renal fibrosis have not been explored. Here, we observed the upregulation of LRP5 in the renal tubules of both type 1 and type 2 diabetic models and of an obstructive nephropathy model. In the obstructed kidneys, Lrp5 knockout significantly ameliorated tubulointerstitial fibrosis and tubular injury without changing Wnt/β-catenin signaling. Instead, decreased levels of TGF-β1 and TGF-β receptors (TβRs) were detected in Lrp5 knockout kidneys, followed by attenuated activation and nuclear translocation of Smad2/3 in the renal tubules, suggesting a regulatory effect of LRP5 on TGF-β/Smad signaling. In consistent with this hypothesis, LRP5 overexpression resulted in enhanced TGF-β/Smad signaling activation in renal tubule epithelial cells. Furthermore, LRP5 was co-immunoprecipitated with TβRI and TβRII, and its extracellular domain was essential for interacting with TβRs and for its pro-fibrotic activity. In addition to stabilizing TβRs, LRP5 increased the basal membrane presentation and TGF-β1-induced internalization of these receptors. Notably, TGF-β1 also induced LRP5 internalization. These findings indicate that LRP5 promotes tubulointerstitial fibrosis, at least partially, via direct modulation of TGF-β/Smad signaling, a novel, Wnt-independent function.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3