Mechanical weeding enhances ecosystem multifunctionality and profit in industrial oil palm

Author:

Iddris Najeeb Al-AminORCID,Formaglio Greta,Paul CarolaORCID,von Groß VolkerORCID,Chen GuantaoORCID,Angulo-Rubiano Andres,Berkelmann Dirk,Brambach FabianORCID,Darras Kevin F. A.,Krashevska ValentynaORCID,Potapov Anton,Wenzel Arne,Irawan Bambang,Damris Muhammad,Daniel RolfORCID,Grass IngoORCID,Kreft Holger,Scheu StefanORCID,Tscharntke Teja,Tjoa Aiyen,Veldkamp EdzoORCID,Corre Marife D.ORCID

Abstract

AbstractOil palm is the most productive oil crop, but its high productivity is associated with conventional management (that is, high fertilization rates and herbicide application), causing deleterious environmental impacts. Using a 22 factorial experiment, we assessed the effects of conventional vs reduced (equal to nutrients removed by fruit harvest) fertilization rates and herbicide vs mechanical weeding on ecosystem functions, biodiversity and profitability. Analysing across multiple ecosystem functions, mechanical weeding exhibited higher multifunctionality than herbicide treatment, although this effect was concealed when evaluating only for individual functions. Biodiversity was also enhanced, driven by 33% more plant species under mechanical weeding. Compared with conventional management, reduced fertilization and mechanical weeding increased profit by 12% and relative gross margin by 11% due to reductions in material costs, while attaining similar yields. Mechanical weeding with reduced, compensatory fertilization in mature oil palm plantations is a tenable management option for enhancing ecosystem multifunctionality and biodiversity and increasing profit, providing win–win situations.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Urban Studies,Renewable Energy, Sustainability and the Environment,Ecology,Geography, Planning and Development,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3