Oversimplification and misestimation of nitrous oxide emissions from wastewater treatment plants

Author:

Song CuihongORCID,Zhu Jun-JieORCID,Willis John L.,Moore Daniel P.ORCID,Zondlo Mark A.ORCID,Ren Zhiyong JasonORCID

Abstract

AbstractWastewater treatment is a major source of anthropogenic nitrous oxide (N2O) emissions. However, the current emission estimations rely on a uniform emission factor (EF) proposed by the Intergovernmental Panel on Climate Change based on a limited database suffering from large uncertainties and inaccuracies. To address this limitation, this study expands the database 12-fold and develops a tier-based approach. Our method considers emission variations across spatial scales, treatment processes and monitoring techniques, enabling more-precise estimations. Here, applying this approach to the US database, we highlight the limitations of current estimations based on uniform EFs and quantified the mean wastewater N2O emission in the United States to be 11.6 MMT CO2-eq. The results also reveal the diverse nature of wastewater N2O emissions and underscore the need for a customized approach to inform facility-level N2O emission estimation as well as inform national- and sector-wide greenhouse gases inventories with emphasis on site-specific considerations. Overall, this study provides a tool to recalibrate the estimations of wastewater N2O emissions, which form the foundation of carbon footprint reduction in wastewater treatment.

Publisher

Springer Science and Business Media LLC

Reference63 articles.

1. Forster, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 7 (Cambridge Univ. Press, 2021).

2. Song, C. et al. Methane emissions from municipal wastewater collection and treatment systems. Environ. Sci. Technol. 57, 2248–2261 (2023).

3. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2021 Ch. 7 (US Environmental Protection Agency, 2023).

4. Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).

5. Wichern, M. et al. Climate change and greenhouse gas emissions within the context of urban wastewater management. Water Solut. 2, 89–94 (2016).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3