Synthesis of valuable benzenoid aromatics from bioderived feedstock

Author:

Zheng ShashaORCID,Wei ZhihongORCID,Wozniak BartoszORCID,Kallmeier Fabian,Baráth EszterORCID,Jiao HaijunORCID,Tin SergeyORCID,de Vries Johannes G.ORCID

Abstract

AbstractAromatic chemicals play indispensable roles in our daily lives, having broad applications in household goods, textiles, healthcare, electronics and automotive, but their production currently relies on fossil resources that have heavy environmental burdens. Synthesis of aromatic chemicals from bio-based resources would be a viable approach to improve their sustainability. However, very few methods are available for achieving this goal. Here we present a strategy to synthesize aromatics from 5-hydroxymethylfurfural (HMF), an organic compound derived from sugars under mild conditions. HMF was first converted in two high-yielding steps into 2,5-dioxohexanal (DOH), a novel C6-compound containing three carbonyl groups. Subsequently, acid-catalysed intramolecular aldol condensation of DOH in the presence of secondary amines selectively produced a range of bio-based 4-dialkylamino substituted phenols and 1,4-di-(dialkylamino)benzenes (Wurster’s blue analogues) in 15–88% yields. In the absence of amines, the industrially important hydroquinone was also synthesized from DOH under acidic conditions. Using a similar approach where 4,5-dioxohexanal was the intermediate, we were also able to prepare catechol, a compound with important industrial applications, from HMF. The proposed approach can pave the way for the production of sustainable aromatic chemicals and move their industrial applications closer to achieving a bioeconomy.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Urban Studies,Renewable Energy, Sustainability and the Environment,Ecology,Geography, Planning and Development,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3