Abstract
AbstractAvoiding catastrophic climate change requires rapid decarbonization and improved ecosystem stewardship at a planetary scale. The carbon released through the burning of fossil fuels would take millennia to regenerate on Earth. Though the timeframe of carbon recovery for ecosystems such as peatlands, mangroves and old-growth forests is shorter (centuries), this timeframe still exceeds the time we have remaining to avoid the worst impacts of global warming. There are some natural places that we cannot afford to lose due to their irreplaceable carbon reserves. Here we map ‘irrecoverable carbon’ globally to identify ecosystem carbon that remains within human purview to manage and, if lost, could not be recovered by mid-century, by when we need to reach net-zero emissions to avoid the worst climate impacts. Since 2010, agriculture, logging and wildfire have caused emissions of at least 4.0 Gt of irrecoverable carbon. The world’s remaining 139.1 ± 443.6 Gt of irrecoverable carbon faces risks from land-use conversion and climate change. These risks can be reduced through proactive protection and adaptive management. Currently, 23.0% of irrecoverable carbon is within protected areas and 33.6% is managed by Indigenous peoples and local communities. Half of Earth’s irrecoverable carbon is concentrated on just 3.3% of its land, highlighting opportunities for targeted efforts to increase global climate security.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Urban Studies,Renewable Energy, Sustainability and the Environment,Ecology,Geography, Planning and Development,Food Science,Global and Planetary Change
Reference87 articles.
1. Folke, C., Polaksy, S., Rockstrom, J., Galaz, V. & Westley, F. Our future in the Anthropocene biosphere. Ambio 50, 834–869 (2021).
2. Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Change 10, 287–295 (2020).
3. IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
4. Cook-Patton, S., Leavitt, S., Gibbs, D. & Harris, N. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).
5. Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data https://doi.org/10.1038/s41597-020-0444-4 (2020).
Cited by
115 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献