A global meta-analysis of ecological effects from offshore marine artificial structures

Author:

Lemasson Anaëlle J.ORCID,Somerfield Paul J.ORCID,Schratzberger Michaela,Thompson Murray S. A.ORCID,Firth Louise B.ORCID,Couce ElenaORCID,McNeill C. Louise,Nunes Joana,Pascoe Christine,Watson Stephen C. L.ORCID,Knights Antony M.ORCID

Abstract

AbstractMarine artificial structures (MAS), including oil and gas installations (O&G) and offshore wind farms (OWFs), have a finite operational period. Selecting the most suitable decommissioning options when reaching end-of-life remains a challenge, in part because their effects are still largely undetermined. Whether decommissioned structures could act (sensu ‘function’) as artificial reefs (ARs) and provide desired ecological benefits is of particular interest. Here we use a meta-analysis approach of 531 effect sizes from 109 articles to assess the ecological effects of MAS, comparing O&G and OWFs to shipwrecks and ARs, with a view to inform their decommissioning. This synthesis demonstrates that while MAS can bring ecological benefits, important idiosyncrasies exist, with differences emerging between MAS types, habitat types, taxa and ecological metrics. Notably, we find limited conclusive evidence that O&G and OWFs would provide significant ecological benefits if decommissioned as ARs. We conclude that decommissioning options aimed at repurposing MAS into ARs may not provide the intended benefits.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3