Pan-cancer analyses suggest kindlin-associated global mechanochemical alterations

Author:

Chowdhury DebojyotiORCID,Mistry Ayush,Maity Debashruti,Bhatia Riti,Priyadarshi ShreyanshORCID,Wadan Simran,Chakraborty Soham,Haldar ShubhasisORCID

Abstract

AbstractKindlins serve as mechanosensitive adapters, transducing extracellular mechanical cues to intracellular biochemical signals and thus, their perturbations potentially lead to cancer progressions. Despite the kindlin involvement in tumor development, understanding their genetic and mechanochemical characteristics across different cancers remains elusive. Here, we thoroughly examined genetic alterations in kindlins across more than 10,000 patients with 33 cancer types. Our findings reveal cancer-specific alterations, particularly prevalent in advanced tumor stage and during metastatic onset. We observed a significant co-alteration between kindlins and mechanochemical proteome in various tumors through the activation of cancer-related pathways and adverse survival outcomes. Leveraging normal mode analysis, we predicted structural consequences of cancer-specific kindlin mutations, highlighting potential impacts on stability and downstream signaling pathways. Our study unraveled alterations in epithelial–mesenchymal transition markers associated with kindlin activity. This comprehensive analysis provides a resource for guiding future mechanistic investigations and therapeutic strategies targeting the roles of kindlins in cancer treatment.

Funder

Department of Biotechnology, Ministry of Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3