Abstract
AbstractN-oleoylglycine (OlGly), a lipid derived from the basic component of olive oil, oleic acid, and N-oleoylalanine (OlAla) are endocannabinoid-like mediators. We report that OlGly and OlAla, by activating the peroxisome proliferator-activated receptor alpha (PPARα), reduce the rewarding properties of a highly palatable food, dopamine neuron firing in the ventral tegmental area, and the obesogenic effect of a high-fat diet rich in lard (HFD-L). An isocaloric olive oil HFD (HFD-O) reduced body weight gain compared to the HFD-L, in a manner reversed by PPARα antagonism, and enhanced brain and intestinal OlGly levels and gut microbial diversity. OlGly or OlAla treatment of HFD-L mice resulted in gut microbiota taxonomic changes partly similar to those induced by HFD-O. We suggest that OlGly and OlAla control body weight by counteracting highly palatable food overconsumption, and possibly rebalancing the gut microbiota, and provide a potential new mechanism of action for the obeso-preventive effects of olive oil-rich diets.
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Reference74 articles.
1. Cena, H. & Calder, P. C. Defining a healthy diet: evidence for the role of contemporary dietary patterns in health and disease. Nutrients 12, 334 (2020).
2. Johnson, P. M. & Kenny, P. J. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat. Neurosci. 13, 635–641 (2010).
3. Park, T. H. & Carr, K. D. Neuroanatomical patterns of fos-like immunoreactivity induced by a palatable meal and meal-paired environment in saline- and naltrexone-treated rats. Brain Res. 805, 169–180 (1998).
4. de Macedo, I. C., de Freitas, J. S. & da Silva Torres, I. L. The influence of palatable diets in reward system activation: a mini review. Adv. Pharmacol. Sci. 2016, 1–7 (2016).
5. Liu, S. et al. Consumption of palatable food primes food approach behavior by rapidly increasing synaptic density in the VTA. Proc. Natl. Acad. Sci. USA 113, 2520–2525 (2016).