Abstract
AbstractMost marine algae preferentially assimilate CO2 via the Calvin-Benson Cycle (C3) and catalyze HCO3− dehydration via carbonic anhydrase (CA) as a CO2-compensatory mechanism, but certain species utilize the Hatch-Slack Cycle (C4) to enhance photosynthesis. The occurrence and importance of the C4 pathway remains uncertain, however. Here, we demonstrate that carbon fixation in Ulva prolifera, a species responsible for massive green tides, involves a combination of C3 and C4 pathways, and a CA-supported HCO3− mechanism. Analysis of CA and key C3 and C4 enzymes, and subsequent analysis of δ13C photosynthetic products showed that the species assimilates CO2 predominately via the C3 pathway, uses HCO3− via the CA mechanism at low CO2 levels, and takes advantage of high irradiance using the C4 pathway. This active and multi-faceted carbon acquisition strategy is advantageous for the formation of massive blooms, as thick floating mats are subject to intense surface irradiance and CO2 limitation.
Funder
Ministry of Science and Technology of the People’s Republic of China
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Reference39 articles.
1. Raven, J. A. Carbon dioxide fixation. in Algal Physiology and Biochemistry (ed Stewart, W. D. P.) 434–455 (Blackwell Scientific Publications, Oxford, 1974).
2. Cooper, T. G., Filmer, D., Wishnick, M. & Lane, M. D. The active species of “CO2” utilized by ribulose diphosphate carboxylase. J. Biol. Chem. 244, 1081–1083 (1969).
3. Badger, M. R. et al. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can. J. Bot. 76, 1052–1071 (1998).
4. Burkhardt, S., Amoroso, G., Riebesell, U. & Sültemeyerl, D. CO2 and HCO3− uptake in marine diatoms acclimated to different CO2 concentrations. Limnol. Oceanogr. 46, 1378–1391 (2001).
5. Giordano, M., Beardall, J. & Raven, J. A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Ann. Rev. Plant Biol. 56, 99–131 (2005).
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献