Author:
Ding Qi,Sethna Ferzin,Wu Xue-Ting,Miao Zhuang,Chen Ping,Zhang Yueqi,Xiao Hua,Feng Wei,Feng Yue,Li Xuan,Wang Hongbing
Abstract
AbstractFragile X syndrome (FXS) is a prevailing genetic disorder of intellectual disability and autism. There is no efficacious medication for FXS. Through in silico screening with a public database, computational analysis of transcriptome profile in FXS mouse neurons predicts therapeutic value of an FDA-approved drug trifluoperazine. Systemic administration of low-dose trifluoperazine at 0.05 mg/kg attenuates multiple FXS- and autism-related behavioral symptoms. Moreover, computational analysis of transcriptome alteration caused by trifluoperazine suggests a new mechanism of action against PI3K (Phosphatidylinositol-4,5-bisphosphate 3-kinase) activity. Consistently, trifluoperazine suppresses PI3K activity and its down-stream targets Akt (protein kinase B) and S6K1 (S6 kinase 1) in neurons. Further, trifluoperazine normalizes the aberrantly elevated activity of Akt and S6K1 and enhanced protein synthesis in FXS mouse. Together, our data demonstrate a promising value of transcriptome-based computation in identification of therapeutic strategy and repurposing drugs for neurological disorders, and suggest trifluoperazine as a potential treatment for FXS.
Funder
U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke
National Natural Science Foundation of China
U.S. Department of Health & Human Services | NIH | National Institute of Mental Health
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献