Minimal mechanistic component of HbYX-dependent proteasome activation that reverses impairment by neurodegenerative-associated oligomers

Author:

Chuah Janelle J. Y.ORCID,Thibaudeau Tiffany A.,Smith David M.ORCID

Abstract

AbstractThe implication of reduced proteasomal function in neurodegenerative diseases combined with studies showing the protective effects of increasing proteasome activity in animal models highlight the need to understand the capacity for proteasome activation by small molecules. The C-terminal HbYX motif is present on many proteasome binding proteins and functions to tether activators to the 20S core particle. Previous studies have shown that peptides with a HbYX motif can autonomously activate 20S gate-opening to allow protein degradation. In this study, through an iterative process of peptide synthesis, we design a HbYX-like dipeptide mimetic that represents only the fundamental components of the HbYX motif. The mimetic robustly induces gate-opening in archaeal, yeast, and mammalian proteasomes. We identify multiple proteasome α subunit residues in the archaeal proteasome involved in HbYX-dependent activation. When stimulated by the mimetic, the mammalian 20S can degrade unfolded proteins such as tau. Findings using our peptide mimetic suggest the HbYX-dependent mechanism requires cooperative binding in at least two intersubunit pockets of the α ring. Most significantly, our peptide mimetic reverses proteasome impairment by neurodegenerative disease-associated oligomers. Collectively, these results validate HbYX-like molecules as having robust potential to stimulate proteasome function, which are potentially useful for treating neurodegenerative diseases.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences

Foundation for the National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3