Statin-mediated disruption of Rho GTPase prenylation and activity inhibits respiratory syncytial virus infection

Author:

Malhi Manpreet,Norris Michael J.,Duan Wenming,Moraes Theo J.,Maynes Jason T.ORCID

Abstract

AbstractRespiratory syncytial virus (RSV) is a leading cause of severe respiratory tract infections in children. To uncover new antiviral therapies, we developed a live cell-based high content screening approach for rapid identification of RSV inhibitors and characterized five drug classes which inhibit the virus. Among the molecular targets for each hit, there was a strong functional enrichment in lipid metabolic pathways. Modulation of lipid metabolites by statins, a key hit from our screen, decreases the production of infectious virus through a combination of cholesterol and isoprenoid-mediated effects. Notably, RSV infection globally upregulates host protein prenylation, including the prenylation of Rho GTPases. Treatment by statins or perillyl alcohol, a geranylgeranyltransferase inhibitor, reduces infection in vitro. Of the Rho GTPases assayed in our study, a loss in Rac1 activity strongly inhibits the virus through a decrease in F protein surface expression. Our findings provide new insight into the importance of host lipid metabolism to RSV infection and highlight geranylgeranyltransferases as an antiviral target for therapeutic development.

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 25‐hydroxycholesterol inhibits human papillomavirus infection in cervical epithelial cells by perturbing cytoskeletal remodeling;Journal of Medical Virology;2023-05-31

2. A Review of Statins and COVID-19;Statins - From Lipid-Lowering Benefits to Pleiotropic Effects;2023-03-17

3. Defining the Assembleome of the Respiratory Syncytial Virus;Subcellular Biochemistry;2023

4. Prospects for the use of statins in antiviral therapy;Clinical Microbiology and Antimicrobial Chemotherapy;2023

5. Drug Repurposing Patent Applications July–September 2022;ASSAY and Drug Development Technologies;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3