Abstract
AbstractSingle-cell transcriptomics datasets from the same anatomical sites generated by different research labs are becoming increasingly common. However, fast and computationally inexpensive tools for standardization of cell-type annotation and data integration are still needed in order to increase research inclusivity. To standardize cell-type annotation and integrate single-cell transcriptomics datasets, we have built a fast model-free integration method, named MASI (Marker-Assisted Standardization and Integration). We benchmark MASI with other well-established methods and demonstrate that MASI outperforms other methods, in terms of integration, annotation, and speed. To harness knowledge from single-cell atlases, we demonstrate three case studies that cover integration across biological conditions, surveyed participants, and research groups, respectively. Finally, we show MASI can annotate approximately one million cells on a personal laptop, making large-scale single-cell data integration more accessible. We envision that MASI can serve as a cheap computational alternative for the single-cell research community.
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献