Deep learning-based image enhancement in optical coherence tomography by exploiting interference fringe

Author:

Lee Woojin,Nam Hyeong Soo,Seok Jae Yeon,Oh Wang-YuhlORCID,Kim Jin WonORCID,Yoo HongkiORCID

Abstract

AbstractOptical coherence tomography (OCT), an interferometric imaging technique, provides non-invasive, high-speed, high-sensitive volumetric biological imaging in vivo. However, systemic features inherent in the basic operating principle of OCT limit its imaging performance such as spatial resolution and signal-to-noise ratio. Here, we propose a deep learning-based OCT image enhancement framework that exploits raw interference fringes to achieve further enhancement from currently obtainable optimized images. The proposed framework for enhancing spatial resolution and reducing speckle noise in OCT images consists of two separate models: an A-scan-based network (NetA) and a B-scan-based network (NetB). NetA utilizes spectrograms obtained via short-time Fourier transform of raw interference fringes to enhance axial resolution of A-scans. NetB was introduced to enhance lateral resolution and reduce speckle noise in B-scan images. The individually trained networks were applied sequentially. We demonstrate the versatility and capability of the proposed framework by visually and quantitatively validating its robust performance. Comparative studies suggest that deep learning utilizing interference fringes can outperform the existing methods. Furthermore, we demonstrate the advantages of the proposed method by comparing our outcomes with multi-B-scan averaged images and contrast-adjusted images. We expect that the proposed framework will be a versatile technology that can improve functionality of OCT.

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3