Abstract
AbstractThe majorities of colorectal cancer (CRC) cases are sporadic in origin and a large proportion of etiologies are associated with environmental stress responses. In response to external and internal stress, the ribosome stands sentinel and stress-driven ribosomal dysfunction triggers the cellular decision pathways via transcriptional reprogramming. In the present study, PR domain zinc finger protein (PRDM) 1, a master transcriptional regulator, was found to be closely associated with ribosomal actions in patients with CRC and the murine models. Stress-driven ribosomal dysfunction enhanced PRDM1 levels in intestinal cancer cells, which contributed to their survival and enhanced cancer cell stemness against cancer treatment. Mechanistically, PRDM1 facilitated clustering modulation of insulin-like growth factor (IGF) receptor-associated genes, which supported cancer cell growth and stemness-linked features. Ribosomal dysfunction-responsive PRDM1 facilitated signaling remodeling for the survival of tumor progenitors, providing compelling evidence for the progression of sporadic CRC.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献