Abstract
AbstractDuring early embryonic development, the transition from totipotency to pluripotency is a fundamental and critical process for proper development. However, the regulatory mechanisms governing this transition remain elusive. Here, we conducted a comprehensive genome-wide CRISPR/Cas9 screen to investigate the 2-cell-like cells (2CLCs) phenotype in mouse embryonic stem cells (mESCs). This effort led to the identification of ten regulators that play a pivotal role in determining cell fate during this transition. Notably, our study revealed Mdm2 as a significant negative regulator of 2CLCs, as perturbation of Mdm2 resulted in a higher proportion of 2CLCs. Mdm2 appears to influence cell fate through its impact on cell cycle progression and H3K27me3 epigenetic modifications. In summary, the results of our CRISPR/Cas9 screen have uncovered several genes with distinct functions in regulating totipotency and pluripotency at various levels, offering a valuable resource for potential targets in future molecular studies.
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Jukam, D., Shariati, S. A. M. & Skotheim, J. M. Zygotic genome activation in vertebrates. Dev. Cell 42, 316–332 (2017).
2. Zhang, W. et al. Zscan4c activates endogenous retrovirus MERVL and cleavage embryo genes. Nucleic Acids Res. 47, 8485–8501 (2019).
3. De Iaco, A. et al. DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat. Genet. 49, 941–945 (2017).
4. Falco, G. et al. Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells. Dev. Biol. 307, 539–550 (2007).
5. Alberio, R. Regulation of cell fate decisions in early mammalian embryos. Annu. Rev. Anim. Biosci. 8, 377–393 (2020).