Abstract
AbstractIdentification of genes and their alleles capable of improving plant growth under low nitrogen (N) conditions is key for developing sustainable agriculture. Here, we show that a genome-wide association study using Arabidopsis thaliana accessions suggested an association between different magnitudes of N deficiency responses and diversity in NRT1.1/NPF6.3 that encodes a dual-affinity nitrate transporter involved in nitrate uptake by roots. Various analyses using accessions exhibiting reduced N deficiency responses revealed that enhanced NRT1.1 expression in shoots rather than in roots is responsible for better growth of Arabidopsis seedlings under N deficient conditions. Furthermore, polymorphisms that increased NRT1.1 promoter activity were identified in the NRT1.1 promoter sequences of the accessions analyzed. Hence, our data indicated that polymorphism-dependent activation of the NRT1.1 promoter in shoots could serve as a tool in molecular breeding programs for improving plant growth in low N environments.
Funder
MEXT | Japan Science and Technology Agency
MEXT | Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献