Abstract
AbstractCoral reef ecosystems are highly threatened and can be extremely sensitive to the effects of climate change. Multiple shark species rely on coral reefs as important habitat and, as such, play a number of significant ecological roles in these ecosystems. How environmental stress impacts routine, site-attached reef shark behavior, remains relatively unexplored. Here, we combine 8 years of acoustic tracking data (2013-2020) from grey reef sharks resident to the remote coral reefs of the Chagos Archipelago in the Central Indian Ocean, with a satellite-based index of coral reef environmental stress exposure. We show that on average across the region, increased stress on the reefs significantly reduces grey reef shark residency, promoting more diffuse space use and increasing time away from shallow forereefs. Importantly, this impact has a lagged effect for up to 16 months. This may have important physiological and conservation consequences for reef sharks, as well as broader implications for reef ecosystem functioning. As climate change is predicted to increase environmental stress on coral reef ecosystems, understanding how site-attached predators respond to stress will be crucial for forecasting the functional significance of altering predator behavior and the potential impacts on conservation for both reef sharks and coral reefs themselves.
Funder
RCUK | Natural Environment Research Council
Fondation Bertarelli
Publisher
Springer Science and Business Media LLC
Reference115 articles.
1. Harvell, C. D. et al. Emerging marine diseases—climate links and anthropogenic factors. Science 285, 1505 (1999).
2. Oliver, J. K., Berkelmans, R. & Eakin, C. M. In Coral Bleaching: Patterns, Processes, Causes and Consequences (eds van Oppen, M. J. H. & Lough, J. M.) 27–49 (Springer International Publishing, 2018).
3. Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).
4. Graham, N. A. J. et al. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 21, 1291–1300 (2007).
5. van Woesik, R. et al. Coral-bleaching responses to climate change across biological scales. Glob. Change Biol. 28, 4229–4250 (2022).